Dedic N, Jones P.G, Hopkins S.C, Lew R, Shao L, Campbell J. E, Spear K. L, Large T. H, Campbell U. C, Hanania T, Leahy E, Koblan K Journal of Pharmacology and Experimental Therapeutics. August 1, 2019 jpet.119.260281.
For the past 50 years, the clinical efficacy of antipsychotic medications has relied on blockade of dopamine D2 receptors. Drug development of non-D2 compounds, seeking to avoid the limiting side effects of dopamine receptor blockade, has failed to date to yield new medicines for patients. In this work, we report the discovery of SEP-363856 (SEP-856), a novel psychotropic agent with a unique mechanism of action. SEP-856 was discovered in a medicinal chemistry effort utilizing a high throughput, high content, mouse-behavior phenotyping platform, in combination with in vitro screening, aimed at developing non-D2 (anti-target) compounds that could nevertheless retain efficacy across multiple animal models sensitive to D2-based pharmacological mechanisms. SEP-856 demonstrated broad efficacy in putative rodent models relating to aspects of schizophrenia, including phencyclidine (PCP)-induced hyperactivity, prepulse inhibition, and PCP-induced deficits in social interaction. In addition to its favorable pharmacokinetic properties, lack of D2 receptor occupancy, and the absence of catalepsy, SEP-856’s broad profile was further highlighted by its robust suppression of rapid eye movement sleep in rats.